LBIBCell
 All Classes Functions Variables Friends Pages
tutorial_02_CDESolverD2Q5_R.cpp
1 /* Copyright (c) 2013 David Sichau <mail"at"sichau"dot"eu>
2  * 2013-2015 Simon Tanaka <tanakas"at"gmx"dot"ch>
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a copy
5  * of this software and associated documentation files (the "Software"), to deal
6  * in the Software without restriction, including without limitation the rights
7  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8  * copies of the Software, and to permit persons to whom the Software is
9  * furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
19  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
20  * THE SOFTWARE.
21  */
22 #include <LbmLib/include/nodes/BoundaryNode.hpp>
23 #include <LbmLib/include/nodes/PhysicalNode.hpp>
24 #include <LbmLib/include/GlobalSimulationParameters.hpp>
25 #include <LbmLib/include/solver/BoundaryAbstractSolver.hpp>
26 #include <LbmLib/include/solver/CDESolver/tutorial_02_CDESolverD2Q5_R.hpp>
27 #include <UtilLib/include/Exception.hpp>
28 #include <UtilLib/include/Log.hpp>
29 #include <algorithm>
30 #include <cassert>
31 #include <numeric>
32 #include <string>
33 #include <random>
34 #include <iomanip>
35 
36 namespace LbmLib {
37 namespace solver {
38 namespace {
39 const double gamma = 100.0;
40 const double a = 0.1;
41 const double deltaT = 1.0e-4;
42 }
43 
45  static std::random_device rd;
46  static std::mt19937 gen(rd());
47  static std::uniform_real_distribution<> dis(-0.01, 0.01);
48 
49  if (this->physicalNode_->getDomainIdentifier() == 0) {
50  for (auto d : cdeDirIter_) {
51  distributions_[d] = 0.0;
52  }
53  }
54  else {
55  for (auto d : cdeDirIter_) {
56  distributions_[d] = (1.0 + dis(gen))/5.0;
57  }
58  }
59 }
60 
61 void tutorial_02_CDESolverD2Q5_R::writeSolver(std::ostream* const stream) {
62  (*stream) << physicalNode_->getXPos() << '\t' << physicalNode_->getYPos();
63  for (auto d : distributions_) {
64  (*stream) << '\t' << d;
65  }
66  (*stream) << '\n';
67 }
68 
69 void tutorial_02_CDESolverD2Q5_R::loadSolver(std::stringstream* const stream) {
70  int x, y;
71  (*stream) >> x >> y;
72  assert(physicalNode_->getXPos() == x && "The position does not match");
73  assert(physicalNode_->getYPos() == y && "The position does not match");
74  for (auto d : cdeDirIter_) {
75  (*stream) >> distributions_[d];
76  }
77 }
78 
79 double& tutorial_02_CDESolverD2Q5_R::accessDistribution(const Direction& dir) {
80  assert(dir > T && dir < NE);
81  return distributions_[dir];
82 }
83 
85  for (auto &it: this->distributions_) {
86  it *= factor;
87  }
88 }
89 
91  return std::accumulate(distributions_.begin(), distributions_.end(), 0.0);
92 }
93 
95 {
96  const double R = this->getC();
97  const double L = physicalNode_->getCDESolverSlow("tutorial_02_CDESolverD2Q5_L").getC();
98 
99  if (this->physicalNode_->getDomainIdentifier() != 0) {
100  return gamma * (a - R + R * R * L);
101  }
102  else {
103  return 0.0;
104  }
105 }
106 
108  assert(physicalNode_ != nullptr);
109  // get the local concentration:
110  const double C = getC();
111 
112  // get the local velocity:
113  const double ux = physicalNode_->getFluidSolver().getVelocity().x;
114  const double uy = physicalNode_->getFluidSolver().getVelocity().y;
115 
116  const double w0 = C / 3.0;
117  const double w1 = C / 6.0;
118  const double tauI = 1.0 / getTau();
119 
120  // temporary computations
121  double temp[5];
122  temp[T] = w0;
123  temp[E] = w1 * (1.0 + ux * 3.0);
124  temp[N] = w1 * (1.0 + uy * 3.0);
125  temp[W] = w1 * (1.0 + (-ux) * 3.0);
126  temp[S] = w1 * (1.0 + (-uy) * 3.0);
127 
128  const double reactionTerm = this->reaction();
129  const double reactionTerm_ZERO = deltaT*reactionTerm / 3.0; // for the ZERO distribution
130  const double reactionTerm_OTHERS = deltaT*reactionTerm / 6.0; // for all the other distributions
131 
132  distributions_[T] = distributions_[T] - distributions_[T] * tauI + temp[T] * tauI + reactionTerm_ZERO;
133  distributions_[E] = distributions_[E] - distributions_[E] * tauI + temp[E] * tauI + reactionTerm_OTHERS;
134  distributions_[N] = distributions_[N] - distributions_[N] * tauI + temp[N] * tauI + reactionTerm_OTHERS;
135  distributions_[W] = distributions_[W] - distributions_[W] * tauI + temp[W] * tauI + reactionTerm_OTHERS;
136  distributions_[S] = distributions_[S] - distributions_[S] * tauI + temp[S] * tauI + reactionTerm_OTHERS;
137 
138  // preparation for advect step: this is necessary
139  localSwap();
140 }
141 
143  const double C = getC();
144  // calculate the speeds
145  const double u = physicalNode_->getFluidSolver().getVelocity().x;
146  const double v = physicalNode_->getFluidSolver().getVelocity().y;
147 
148  const double w1 = C / 6.0;
149 
150  switch (dir) {
151  case T:
152  return C / 3.0;
153  break;
154  case E:
155  return w1 * (1.0 + u * 3.0);
156  break;
157  case N:
158  return w1 * (1.0 + v * 3.0);
159  break;
160  case W:
161  return w1 * (1.0 + (-u) * 3.0);
162  break;
163  case S:
164  return w1 * (1.0 + (-v) * 3.0);
165  break;
166  default:
167  assert(
168  false &&
169  "you want to get a inverse direction of a Direction that does not exist");
170  }
171  return 0;
172 }
173 
175  assert(physicalNode_ != nullptr);
176  std::swap(distributions_[getInverseDirection(W)],
179  std::swap(distributions_[getInverseDirection(S)],
182 }
183 
184 void tutorial_02_CDESolverD2Q5_R::localSwap() {
185  std::swap(distributions_[E], distributions_[W]);
186  std::swap(distributions_[N], distributions_[S]);
187 }
188 
190  double sumC = 0.0;
191  int counter = 0;
192  const unsigned int myNodeID = this->physicalNode_->getDomainIdentifier();
193 
194  // accumulate the concenctration of appropriate (tbd) neighbors.
195  // first, try {E, N, W, S}:
196  std::array<Direction, 4> dir1 {{E, N, W, S}};
197  for (auto d : dir1) {
198  // if it has no boundary neighbour and the neighbour is in the same domain then get the concentration
199  if ((this->physicalNode_->getBoundaryNeighbour(d) == nullptr) &&
200  (myNodeID ==
203  solverID_).getC();
204  counter++;
205  }
206  }
207  // if not successful, try {NE,NW,SW,SE}:
208  if (counter == 0) {
209  std::array<Direction, 4> dir2 {{NE, NW, SW, SE}};
210  for (auto d : dir2) {
211  // we need to check the diagonals as it does not work in the other directions
212  if ( (this->physicalNode_->getBoundaryNeighbour(d) == nullptr) &&
213  (myNodeID == this->physicalNode_->getPhysicalNeighbour(d)->getDomainIdentifier())) {
214  sumC +=
216  solverID_).getC();
217  counter++;
218  }
219  }
220  if (counter != 0) {
221  std::stringstream message;
222  message << std::setprecision(12);
223  message << "Default initialisation on PhysicalNode ";
224  message << "("<< this->physicalNode_->getXPos()<<","<<this->physicalNode_->getYPos() <<")";
225  message << " failed. Therefore the node was reinitialised from the diagonal directions";
226  LOG(UtilLib::logINFO) << message.str().c_str();
227  }
228 
229  }
230 
231  // if still fails: initialize with neighbors, even if they are in an other domain:
232  if (counter == 0) {
233  std::stringstream message;
234  message << std::setprecision(12)
235  << "Initialization on PhysicalNode "
236  << "("<< this->physicalNode_->getXPos()<<","<<this->physicalNode_->getYPos() <<")"
237  << " failed at time "
238  << Parameters.getCurrentIteration()
239  << ". Therefore the node was initialized with all neighbors {E,N,W,S}, ignoring their domainID."
240  << " CurrentNodeID="<<this->physicalNode_->getDomainIdentifier();
241  for (auto d : dir1) {
242  // if it has no boundary neighbour and the neighbour is in the same domain then get the concentration
244  solverID_).getC();
245  counter++;
246  }
247  LOG(UtilLib::logINFO) << message.str().c_str();
248  }
249 
250  sumC /= static_cast<double>(counter);
251  for (auto d : cdeDirIter_) {
252  this->distributions_[d] = sumC / 5.0;
253  }
254  this->collide();
255 }
256 
257 const std::string tutorial_02_CDESolverD2Q5_R::name = "tutorial_02_CDESolverD2Q5_R";
258 
259 
260 CDEDirectionsIteratorD2Q5 const tutorial_02_CDESolverD2Q5_R::cdeDirIter_ =
262 
263 tutorial_02_CDESolverD2Q5_R::tutorial_02_CDESolverD2Q5_R() : BaseCDESolver(),
264  distributions_(std::array<double,
265  5> {
266  {0.0, 0.0, 0.0,
267  0.0, 0.0}
268  }
269 
270  )
271 {}
272 }
273 } // end namespace
274 
virtual double calculateEquilibrium(const Direction &dir)
calculateEquilibrium calculates the equilibirum for direction dir
solver::CDEAbstractSolver & getCDESolverSlow(const std::string &name) const
getCDESolverSlow Getter method for the cde Solver
The Base class for all CDESolver implementations This classes uses the recursive template idiom to au...
size_t solverID_
solverID_ The ID of the solver instance. Coincides with the index in the vector PhysicalNode::cdeSolv...
virtual void advect()
advect The advect step of the LBM
PhysicalNode * getPhysicalNeighbour(const Direction &d) const
getPhysicalNeighbour Getter method to access the Physical Neighbour
virtual void reinitialise()
reinitialise this solver as the corresponding physical node has switched domain
const nodes::PhysicalNode * physicalNode_
physicalNode_ The physical Node which owns this solver
virtual void collide()
collide The collision step of the LBM
The CDEDirectionsIteratorD2Q5 class Provides methods to handle the Directions. Use the Function Direc...
Definition: Direction.hpp:126
T x
x the value in x direction
Definition: Field.hpp:50
virtual double & accessDistribution(const Direction &dir)=0
accessDistribution Access to the distribution
virtual double & accessDistribution(const Direction &dir)
accessDistribution Access to the distribution
unsigned int getDomainIdentifier() const
getter for the Domain Identifier of this node
virtual double getC() const
getC Calculates the concentration on this node
virtual void rescaleDistributions(const double factor)
Rescales all distributions by a factor.
virtual double getC() const =0
getC Calculates the concentration on this node
const Field< double > & getVelocity() const
getVelocity Returns the current velocity of the fluid
double getTau() const
getTau Getter method for the tau parameter
const solver::FluidSolver & getFluidSolver() const
getFluidSolver Const getter method for the fluid Solver
int getXPos() const
getXPos Getter for the X position
virtual void writeSolver(std::ostream *const stream)
writes the solver to the stream
virtual void loadSolver(std::stringstream *const stream)
loads the solver from the stream
BoundaryNode * getBoundaryNeighbour(const Direction &d) const
getBoundaryNeighbour Getter method to access the Boundary Neighbour
int getYPos() const
getYPos Getter for the Y position
const double reaction(void) const
reaction The reaction term of the tutorial_02_CDESolverD2Q5_R solver is implemented here...
solver::CDEAbstractSolver & getCDESolver(size_t id) const
getCDESolver Getter method for the cde Solver
virtual void initSolver()
initSolver Use this to initalise the solver
T y
y the value in y direction
Definition: Field.hpp:54