22 #include <LbmLib/include/nodes/BoundaryNode.hpp>
23 #include <LbmLib/include/nodes/PhysicalNode.hpp>
24 #include <LbmLib/include/GlobalSimulationParameters.hpp>
25 #include <LbmLib/include/solver/BoundaryAbstractSolver.hpp>
26 #include <LbmLib/include/solver/CDESolver/SchnakenbergD2Q5v.hpp>
28 #include <UtilLib/include/Exception.hpp>
29 #include <UtilLib/include/Log.hpp>
38 const double gamma = 800.0;
46 static std::random_device rd;
47 static std::mt19937 gen(rd());
48 static std::uniform_real_distribution<> dis(-0.01, 0.01);
49 double temp = 0.2 * (1.0 + dis(gen));
50 for (
auto d : cdeDirIter_) {
51 distributions_[d] = temp;
53 deltaT = 20.0 / Parameters.getIterations();
58 for (
auto d : distributions_) {
59 (*stream) <<
'\t' << d;
69 for (
auto d : cdeDirIter_) {
70 (*stream) >> distributions_[d];
75 assert(dir > T && dir < NE);
76 return distributions_[dir];
80 for (
auto &it: this->distributions_) {
86 return std::accumulate(distributions_.begin(), distributions_.end(), 0.0);
92 const double C =
getC();
98 const double w0 = C / 3.0;
99 const double w1 = C / 6.0;
100 const double tauI = 1.0 /
getTau();
105 temp[E] = w1 * (1.0 + ux * 3.0);
106 temp[N] = w1 * (1.0 + uy * 3.0);
107 temp[W] = w1 * (1.0 + (-ux) * 3.0);
108 temp[S] = w1 * (1.0 + (-uy) * 3.0);
112 double reaktionTerm = deltaT * gamma * (b - Cu * Cu * C) / 3.0;
113 double reaktionTermR = deltaT * gamma * (b - Cu * Cu * C) / 6.0;
118 distributions_[T] = distributions_[T] - distributions_[T] * tauI + temp[T] *
120 distributions_[E] = distributions_[E] - distributions_[E] * tauI + temp[E] *
121 tauI + reaktionTermR;
122 distributions_[N] = distributions_[N] - distributions_[N] * tauI + temp[N] *
123 tauI + reaktionTermR;
124 distributions_[W] = distributions_[W] - distributions_[W] * tauI + temp[W] *
125 tauI + reaktionTermR;
126 distributions_[S] = distributions_[S] - distributions_[S] * tauI + temp[S] *
127 tauI + reaktionTermR;
142 const double C =
getC();
147 const double w1 = C / 6.0;
154 return w1 * (1.0 + u * 3.0);
157 return w1 * (1.0 + v * 3.0);
160 return w1 * (1.0 + (-u) * 3.0);
163 return w1 * (1.0 + (-v) * 3.0);
168 "you want to get a inverse direction of a Direction that does not exist");
175 std::swap(distributions_[getInverseDirection(W)],
178 std::swap(distributions_[getInverseDirection(S)],
183 void SchnakenbergD2Q5v::localSwap() {
184 std::swap(distributions_[E], distributions_[W]);
185 std::swap(distributions_[N], distributions_[S]);
191 for (
auto d : cdeDirIter_) {
197 getDomainIdentifier()) ) {
204 std::array<Direction, 4> dir {{NE, NW, SW, SE}
210 getDomainIdentifier()) {
217 LOG(UtilLib::logINFO) <<
218 "the default initialisation failed. Therefore the node was reinitialised from the diagonal directions";
222 "The cde solver failed to reinitialise the node, this might be due to a stange geometry");
224 sumC /=
static_cast<double>(counter);
225 for (
auto d : cdeDirIter_) {
226 distributions_[d] = sumC * 0.25;
231 const std::string SchnakenbergD2Q5v::name =
"SchnakenbergD2Q5v";
238 distributions_(std::array<double,
solver::CDEAbstractSolver & getCDESolverSlow(const std::string &name) const
getCDESolverSlow Getter method for the cde Solver
The Base class for all CDESolver implementations This classes uses the recursive template idiom to au...
size_t solverID_
solverID_ The ID of the solver instance. Coincides with the index in the vector PhysicalNode::cdeSolv...
PhysicalNode * getPhysicalNeighbour(const Direction &d) const
getPhysicalNeighbour Getter method to access the Physical Neighbour
const nodes::PhysicalNode * physicalNode_
physicalNode_ The physical Node which owns this solver
The CDEDirectionsIteratorD2Q5 class Provides methods to handle the Directions. Use the Function Direc...
T x
x the value in x direction
virtual double & accessDistribution(const Direction &dir)=0
accessDistribution Access to the distribution
virtual void advect()
advect The advect step of the LBM
unsigned int getDomainIdentifier() const
getter for the Domain Identifier of this node
virtual double getC() const =0
getC Calculates the concentration on this node
virtual void initSolver()
initSolver Use this to initalise the solver
virtual double calculateEquilibrium(const Direction &dir)
calculateEquilibrium calculates the equilibirum for direction dir
virtual void writeSolver(std::ostream *const stream)
writes the solver to the stream
virtual void collide()
collide The collision step of the LBM
const Field< double > & getVelocity() const
getVelocity Returns the current velocity of the fluid
double getTau() const
getTau Getter method for the tau parameter
const solver::FluidSolver & getFluidSolver() const
getFluidSolver Const getter method for the fluid Solver
virtual void loadSolver(std::stringstream *const stream)
loads the solver from the stream
int getXPos() const
getXPos Getter for the X position
virtual double & accessDistribution(const Direction &dir)
accessDistribution Access to the distribution
BoundaryNode * getBoundaryNeighbour(const Direction &d) const
getBoundaryNeighbour Getter method to access the Boundary Neighbour
int getYPos() const
getYPos Getter for the Y position
solver::CDEAbstractSolver & getCDESolver(size_t id) const
getCDESolver Getter method for the cde Solver
virtual void rescaleDistributions(const double factor)
Rescales all distributions by a factor.
virtual double getC() const
getC Calculates the concentration on this node
virtual void reinitialise()
reinitialise this solver as the corresponding physical node has switched domain
T y
y the value in y direction