LBIBCell
 All Classes Functions Variables Friends Pages
SchnakenbergD2Q5u.cpp
1 /* Copyright (c) 2013 David Sichau <mail"at"sichau"dot"eu>
2  * 2013-2015 Simon Tanaka <tanakas"at"gmx"dot"ch>
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a copy
5  * of this software and associated documentation files (the "Software"), to deal
6  * in the Software without restriction, including without limitation the rights
7  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8  * copies of the Software, and to permit persons to whom the Software is
9  * furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
19  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
20  * THE SOFTWARE.
21  */
22 #include <LbmLib/include/nodes/BoundaryNode.hpp>
23 #include <LbmLib/include/nodes/PhysicalNode.hpp>
24 #include <LbmLib/include/GlobalSimulationParameters.hpp>
25 #include <LbmLib/include/solver/BoundaryAbstractSolver.hpp>
26 #include <LbmLib/include/solver/CDESolver/SchnakenbergD2Q5u.hpp>
27 
28 #include <UtilLib/include/Exception.hpp>
29 #include <UtilLib/include/Log.hpp>
30 #include <algorithm>
31 #include <cassert>
32 #include <numeric>
33 #include <string>
34 #include <random>
35 namespace LbmLib {
36 namespace solver {
37 namespace {
38 const double gamma = 800.0;
39 const double a = 0.1;
40 double deltaT;
41 }
42 
44  // init with C = 1 + eps where eps is a random number with mean 0 and std 0.01
45  static std::random_device rd;
46  static std::mt19937 gen(rd());
47  static std::uniform_real_distribution<> dis(-0.01, 0.01);
48  double temp = 0.2 * (1.0 + dis(gen));
49  for (auto d : cdeDirIter_) {
50  distributions_[d] = temp;
51  }
52  if (this->physicalNode_->getDomainIdentifier() == 0) {
53  for (auto d : cdeDirIter_) {
54  distributions_[d] = 0.0;
55  }
56  }
57  deltaT = 20.0 / Parameters.getIterations();
58 }
59 
60 void SchnakenbergD2Q5u::writeSolver(std::ostream* const stream) {
61  (*stream) << physicalNode_->getXPos() << '\t' << physicalNode_->getYPos();
62  for (auto d : distributions_) {
63  (*stream) << '\t' << d;
64  }
65  (*stream) << '\n';
66 }
67 
68 void SchnakenbergD2Q5u::loadSolver(std::stringstream* const stream) {
69  int x, y;
70  (*stream) >> x >> y;
71  assert(physicalNode_->getXPos() == x && "The position does not match");
72  assert(physicalNode_->getYPos() == y && "The position does not match");
73  for (auto d : cdeDirIter_) {
74  (*stream) >> distributions_[d];
75  }
76 }
77 
78 double& SchnakenbergD2Q5u::accessDistribution(const Direction& dir) {
79  assert(dir > T && dir < NE);
80  return distributions_[dir];
81 }
82 
83 void SchnakenbergD2Q5u::rescaleDistributions(const double factor) {
84  for (auto &it: this->distributions_) {
85  it *= factor;
86  }
87 }
88 
89 double SchnakenbergD2Q5u::getC() const {
90  return std::accumulate(distributions_.begin(), distributions_.end(), 0.0);
91 }
92 
94  assert(physicalNode_ != nullptr);
95  // Calculate the rho
96  const double C = getC();
97 
98  // calculate the speeds
99  const double ux = physicalNode_->getFluidSolver().getVelocity().x;
100  const double uy = physicalNode_->getFluidSolver().getVelocity().y;
101  // std::cout<<std::sqrt(ux*ux+uy*uy)<<std::endl;
102  const double w0 = C / 3.0;
103  const double w1 = C / 6.0;
104  const double tauI = 1.0 / getTau();
105 
106 
107  double temp[5];
108  temp[T] = w0;
109  temp[E] = w1 * (1.0 + ux * 3.0);
110  temp[N] = w1 * (1.0 + uy * 3.0);
111  temp[W] = w1 * (1.0 + (-ux) * 3.0);
112  temp[S] = w1 * (1.0 + (-uy) * 3.0);
113 
114  const std::string schnakenbergD2Q5v = "SchnakenbergD2Q5v";
115  const double Cv = physicalNode_->getCDESolverSlow(schnakenbergD2Q5v).getC();
116  double reaktionTerm = deltaT * gamma * (a - C + C * C * Cv) / 3.0;
117  double reaktionTermR = deltaT * gamma * (a - C + C * C * Cv) / 6.0;
118  if (this->physicalNode_->getDomainIdentifier() == 0) {
119  reaktionTerm = 0.0;
120  reaktionTermR = 0.0;
121  }
122  distributions_[T] = distributions_[T] - distributions_[T] * tauI + temp[T] *
123  tauI + reaktionTerm;
124  distributions_[E] = distributions_[E] - distributions_[E] * tauI + temp[E] *
125  tauI + reaktionTermR;
126  distributions_[N] = distributions_[N] - distributions_[N] * tauI + temp[N] *
127  tauI + reaktionTermR;
128  distributions_[W] = distributions_[W] - distributions_[W] * tauI + temp[W] *
129  tauI + reaktionTermR;
130  distributions_[S] = distributions_[S] - distributions_[S] * tauI + temp[S] *
131  tauI + reaktionTermR;
132  // for (auto d : cdeDirIter_) {
133  // double tempD = distributions_[d];
134  // // compute non equilibirum
135  // // make relaxation
136  // distributions_[d] = tempD - tempD * tauI + temp[d] * tauI + reaktionTerm;
137  // }
138 
139 
140  // preparation for advect step
141  localSwap();
142 }
143 
144 double SchnakenbergD2Q5u::calculateEquilibrium(const Direction& dir) {
145  const double C = getC();
146  // calculate the speeds
147  const double u = physicalNode_->getFluidSolver().getVelocity().x;
148  const double v = physicalNode_->getFluidSolver().getVelocity().y;
149 
150  const double w1 = C / 6.0;
151 
152  switch (dir) {
153  case T:
154  return C / 3.0;
155  break;
156  case E:
157  return w1 * (1.0 + u * 3.0);
158  break;
159  case N:
160  return w1 * (1.0 + v * 3.0);
161  break;
162  case W:
163  return w1 * (1.0 + (-u) * 3.0);
164  break;
165  case S:
166  return w1 * (1.0 + (-v) * 3.0);
167  break;
168  default:
169  assert(
170  false &&
171  "you want to get a inverse direction of a Direction that does not exist");
172  }
173  return 0;
174 }
175 
177  assert(physicalNode_ != nullptr);
178  std::swap(distributions_[getInverseDirection(W)],
181  std::swap(distributions_[getInverseDirection(S)],
184 }
185 
186 void SchnakenbergD2Q5u::localSwap() {
187  std::swap(distributions_[E], distributions_[W]);
188  std::swap(distributions_[N], distributions_[S]);
189 }
190 
192  double sumC = 0.0;
193  int counter = 0;
194  for (auto d : cdeDirIter_) {
195  // if it has no boundary neighbour and the neighbour is in the same domain then get the concentration
196  if ((d != T) &&
197  (this->physicalNode_->getBoundaryNeighbour(d) == nullptr) &&
200  getDomainIdentifier()) ) {
202  solverID_).getC();
203  counter++;
204  }
205  }
206  if (counter == 0) {
207  std::array<Direction, 4> dir {{NE, NW, SW, SE}
208  };
209  for (auto d : dir) {
210  // we need to check the diagonals as it does not work in the other directions
211  if (this->physicalNode_->getDomainIdentifier() ==
213  getDomainIdentifier()) {
214  sumC +=
216  solverID_).getC();
217  counter++;
218  }
219  }
220  LOG(UtilLib::logINFO) <<
221  "the default initialisation failed. Therefore the node was reinitialised from the diagonal directions";
222  }
223  if (counter == 0) {
225  "The cde solver failed to reinitialise the node, this might be due to a stange geometry");
226  }
227  sumC /= static_cast<double>(counter);
228  for (auto d : cdeDirIter_) {
229  distributions_[d] = sumC / 4.0;
230  }
231  this->collide();
232 }
233 
234 const std::string SchnakenbergD2Q5u::name = "SchnakenbergD2Q5u";
235 
236 
237 CDEDirectionsIteratorD2Q5 const SchnakenbergD2Q5u::cdeDirIter_ =
239 
240 SchnakenbergD2Q5u::SchnakenbergD2Q5u() : BaseCDESolver(),
241  distributions_(std::array<double,
242  5> {
243  {0.0, 0.0, 0.0,
244  0.0, 0.0}
245  }
246 
247  )
248 {}
249 }
250 } // end namespace
virtual double getC() const
getC Calculates the concentration on this node
solver::CDEAbstractSolver & getCDESolverSlow(const std::string &name) const
getCDESolverSlow Getter method for the cde Solver
virtual void advect()
advect The advect step of the LBM
The Base class for all CDESolver implementations This classes uses the recursive template idiom to au...
virtual double calculateEquilibrium(const Direction &dir)
calculateEquilibrium calculates the equilibirum for direction dir
size_t solverID_
solverID_ The ID of the solver instance. Coincides with the index in the vector PhysicalNode::cdeSolv...
virtual void collide()
collide The collision step of the LBM
PhysicalNode * getPhysicalNeighbour(const Direction &d) const
getPhysicalNeighbour Getter method to access the Physical Neighbour
const nodes::PhysicalNode * physicalNode_
physicalNode_ The physical Node which owns this solver
The CDEDirectionsIteratorD2Q5 class Provides methods to handle the Directions. Use the Function Direc...
Definition: Direction.hpp:126
T x
x the value in x direction
Definition: Field.hpp:50
virtual double & accessDistribution(const Direction &dir)=0
accessDistribution Access to the distribution
unsigned int getDomainIdentifier() const
getter for the Domain Identifier of this node
virtual double getC() const =0
getC Calculates the concentration on this node
const Field< double > & getVelocity() const
getVelocity Returns the current velocity of the fluid
double getTau() const
getTau Getter method for the tau parameter
const solver::FluidSolver & getFluidSolver() const
getFluidSolver Const getter method for the fluid Solver
int getXPos() const
getXPos Getter for the X position
BoundaryNode * getBoundaryNeighbour(const Direction &d) const
getBoundaryNeighbour Getter method to access the Boundary Neighbour
virtual void writeSolver(std::ostream *const stream)
writes the solver to the stream
int getYPos() const
getYPos Getter for the Y position
solver::CDEAbstractSolver & getCDESolver(size_t id) const
getCDESolver Getter method for the cde Solver
virtual void reinitialise()
reinitialise this solver as the corresponding physical node has switched domain
virtual void rescaleDistributions(const double factor)
Rescales all distributions by a factor.
virtual void initSolver()
initSolver Use this to initalise the solver
T y
y the value in y direction
Definition: Field.hpp:54
virtual double & accessDistribution(const Direction &dir)
accessDistribution Access to the distribution
virtual void loadSolver(std::stringstream *const stream)
loads the solver from the stream