22 #include <LbmLib/include/nodes/BoundaryNode.hpp>
23 #include <LbmLib/include/nodes/PhysicalNode.hpp>
24 #include <LbmLib/include/GlobalSimulationParameters.hpp>
25 #include <LbmLib/include/solver/BoundaryAbstractSolver.hpp>
26 #include <LbmLib/include/solver/CDESolver/CDESolverD2Q5BMP.hpp>
27 #include <UtilLib/include/Exception.hpp>
28 #include <UtilLib/include/Log.hpp>
39 const double gamma = 800.0;
46 for (
auto d : cdeDirIter_) {
47 distributions_[d] = 0.0;
54 for (
auto d : distributions_) {
55 (*stream) <<
'\t' << d;
65 for (
auto d : cdeDirIter_) {
66 (*stream) >> distributions_[d];
71 assert(dir > T && dir < NE);
72 return distributions_[dir];
76 for (
auto &it: this->distributions_) {
82 return std::accumulate(distributions_.begin(), distributions_.end(), 0.0);
88 const double C =
getC();
95 const double w0 = C / 3.0;
96 const double w1 = C / 6.0;
97 const double tauI = 1.0 /
getTau();
102 temp[E] = w1 * (1.0 + ux * 3.0);
103 temp[N] = w1 * (1.0 + uy * 3.0);
104 temp[W] = w1 * (1.0 + (-ux) * 3.0);
105 temp[S] = w1 * (1.0 + (-uy) * 3.0);
109 const double BMPdecay = 0.001;
110 const double BMPproduction = 0.00001;
111 const double k_hill = 0.01;
112 const double n_hill = 4;
114 double reaktionTerm = deltaT*(-BMPdecay*C) / 3.0;
115 double reaktionTermR = deltaT*(-BMPdecay*C) / 6.0;
118 reaktionTerm = deltaT * BMPproduction / 3.0 * std::pow(HH,n_hill)/(std::pow(k_hill,n_hill)+std::pow(HH,n_hill));
119 reaktionTermR = deltaT * BMPproduction / 6.0 * std::pow(HH,n_hill)/(std::pow(k_hill,n_hill)+std::pow(HH,n_hill));
121 distributions_[T] = distributions_[T] - distributions_[T] * tauI + temp[T] *
123 distributions_[E] = distributions_[E] - distributions_[E] * tauI + temp[E] *
124 tauI + reaktionTermR;
125 distributions_[N] = distributions_[N] - distributions_[N] * tauI + temp[N] *
126 tauI + reaktionTermR;
127 distributions_[W] = distributions_[W] - distributions_[W] * tauI + temp[W] *
128 tauI + reaktionTermR;
129 distributions_[S] = distributions_[S] - distributions_[S] * tauI + temp[S] *
130 tauI + reaktionTermR;
145 const double C =
getC();
150 const double w1 = C / 6.0;
157 return w1 * (1.0 + u * 3.0);
160 return w1 * (1.0 + v * 3.0);
163 return w1 * (1.0 + (-u) * 3.0);
166 return w1 * (1.0 + (-v) * 3.0);
171 "you want to get a inverse direction of a Direction that does not exist");
178 std::swap(distributions_[getInverseDirection(W)],
181 std::swap(distributions_[getInverseDirection(S)],
186 void CDESolverD2Q5BMP::localSwap() {
187 std::swap(distributions_[E], distributions_[W]);
188 std::swap(distributions_[N], distributions_[S]);
198 std::array<Direction, 4> dir1 {{E, N, W, S}};
199 for (
auto d : dir1) {
211 std::array<Direction, 4> dir2 {{NE, NW, SW, SE}};
212 for (
auto d : dir2) {
223 std::stringstream message;
224 message << std::setprecision(12);
225 message <<
"Default initialisation on PhysicalNode ";
227 message <<
" failed. Therefore the node was reinitialised from the diagonal directions";
228 LOG(UtilLib::logINFO) << message.str().c_str();
235 std::stringstream message;
236 message << std::setprecision(12)
237 <<
"Initialization on PhysicalNode "
239 <<
" failed at time "
240 << Parameters.getCurrentIteration()
241 <<
". Therefore the node was initialized with all neighbors {E,N,W,S}, ignoring their domainID."
243 for (
auto d : dir1) {
249 LOG(UtilLib::logINFO) << message.str().c_str();
252 sumC /=
static_cast<double>(counter);
253 for (
auto d : cdeDirIter_) {
254 this->distributions_[d] = sumC / 5.0;
259 const std::string CDESolverD2Q5BMP::name =
"CDESolverD2Q5BMP";
266 distributions_(std::array<double,
solver::CDEAbstractSolver & getCDESolverSlow(const std::string &name) const
getCDESolverSlow Getter method for the cde Solver
The Base class for all CDESolver implementations This classes uses the recursive template idiom to au...
size_t solverID_
solverID_ The ID of the solver instance. Coincides with the index in the vector PhysicalNode::cdeSolv...
virtual void advect()
advect The advect step of the LBM
PhysicalNode * getPhysicalNeighbour(const Direction &d) const
getPhysicalNeighbour Getter method to access the Physical Neighbour
const nodes::PhysicalNode * physicalNode_
physicalNode_ The physical Node which owns this solver
The CDEDirectionsIteratorD2Q5 class Provides methods to handle the Directions. Use the Function Direc...
T x
x the value in x direction
virtual double & accessDistribution(const Direction &dir)=0
accessDistribution Access to the distribution
unsigned int getDomainIdentifier() const
getter for the Domain Identifier of this node
virtual double getC() const
getC Calculates the concentration on this node
unsigned int getCellType() const
getter for the cell type of this node
virtual double getC() const =0
getC Calculates the concentration on this node
virtual void collide()
collide The collision step of the LBM
const Field< double > & getVelocity() const
getVelocity Returns the current velocity of the fluid
double getTau() const
getTau Getter method for the tau parameter
const solver::FluidSolver & getFluidSolver() const
getFluidSolver Const getter method for the fluid Solver
int getXPos() const
getXPos Getter for the X position
virtual void reinitialise()
reinitialise this solver as the corresponding physical node has switched domain
virtual void writeSolver(std::ostream *const stream)
writes the solver to the stream
virtual double & accessDistribution(const Direction &dir)
accessDistribution Access to the distribution
BoundaryNode * getBoundaryNeighbour(const Direction &d) const
getBoundaryNeighbour Getter method to access the Boundary Neighbour
int getYPos() const
getYPos Getter for the Y position
virtual void loadSolver(std::stringstream *const stream)
loads the solver from the stream
solver::CDEAbstractSolver & getCDESolver(size_t id) const
getCDESolver Getter method for the cde Solver
virtual double calculateEquilibrium(const Direction &dir)
calculateEquilibrium calculates the equilibirum for direction dir
virtual void initSolver()
initSolver Use this to initalise the solver
virtual void rescaleDistributions(const double factor)
Rescales all distributions by a factor.
T y
y the value in y direction